KEY PUBLICATIONS

DISCOVERING THAT MITOCHONDRIA-ER CONTACTS REMODEL THEIR STRUCTURE DURING METABOLIC SHIFTS

PNAS, December 2014

Hepatic metabolism requires mitochondria to adapt their bioenergetic and biosynthetic output to accompany the ever-changing anabolic/catabolic state of the liver cell, but the wiring of this process is still largely unknown. Using a postprandial mouse liver model and quantitative cryo-EM analysis, we show that when the hepatic mammalian target of rapamycin complex 1 (mTORC1) signaling pathway disengages, the mitochondria network fragments, cristae density drops by 30%, and mitochondrial respiratory capacity decreases by 20%. Instead, mitochondria–ER contacts (MERCs), which mediate calcium and phospholipid fluxes between these organelles, double in length. These events are associated with the transient expression of two previously unidentified C-terminal fragments (CTFs) of Optic atrophy 1 (Opa1), a mitochondrial GTPase that regulates cristae biogenesis and mitochondria dynamics. Expression of Opa1 CTFs in the intermembrane space has no effect on mitochondria morphology, supporting a model in which they are intermediates of an Opa1 degradation program. Using an in vitro assay, we show that these CTFs indeed originate from the cleavage of Opa1 at two evolutionarily conserved consensus sites that map within critical folds of the GTPase. This processing of Opa1, termed C-cleavage, is mediated by the activity of a cysteine protease whose activity is independent from that of Oma1 and presenilin-associated rhomboid-like (PARL), two known Opa1 regulators. However, C-cleavage requires Mitofusin-2 (Mfn2), a key factor in mitochondria–ER tethering, thereby linking cristae remodeling to MERC assembly. Thus, in vivo, mitochondria adapt to metabolic shifts through the parallel remodeling of the cristae and of the MERCs via a mechanism that degrades Opa1 in an Mfn2-dependent pathway.

DISCOVERING HOW THE ACTIVITY OF PARL, A CRITICALLY IMPORTANT MITOCHONDRIAL PROTEASE, IS REGULATED

PNAS, December 2006

Remodeling of mitochondria is a dynamic process coordinated by fusion and fission of the inner and outer membranes of the organelle, mediated by a set of conserved proteins. In metazoans, the molecular mechanism behind mitochondrial morphology has been recruited to govern novel functions, such as development, calcium signaling, and apoptosis, which suggests that novel mechanisms should exist to regulate the conserved membrane fusion/fission machinery. Here we show that phosphorylation and cleavage of the vertebrate-specific Pβ domain of the mammalian presenilin-associated rhomboid-like (PARL) protease can influence mitochondrial morphology. Phosphorylation of three residues embedded in this domain, Ser-65, Thr-69, and Ser-70, impair a cleavage at position Ser77–Ala78 that is required to initiate PARL-induced mitochondrial fragmentation. Our findings reveal that PARL phosphorylation and cleavage impact mitochondrial dynamics, providing a blueprint to study the molecular evolution of mitochondrial morphology.

RESEARCH OUTLOOK: THE COMING OF AGE OF THE MITOCHONDRIA-ER CONTACTS

Cell Death & Differentiation, September 2016

The sites of near-contact between the mitochondrion and the endoplasmic reticulum (ER) have earned a lot of attention due to their key role in the maintenance of lipid and calcium (Ca2+) homeostasis, in the initiation of autophagy and mitochondrial division, and in sensing metabolic shifts. At these sites, typically called MAMs (mitochondria-associated ER membranes) or MERCs (mitochondria–ER contacts), the organelles juxtapose at a distance that can range from ~10 to ~50 nm. The multifunctional role of this subcellular compartment is puzzling; further, recent studies have shown that mitochondria–ER contacts are highly plastic structures that remodel upon metabolic transitions and that their activity in controlling lipid homeostasis could be involved in Alzheimer’s disease pathogenesis. This review aims at integrating the functions of this subcellular compartment to its most characterizing and unexplored structural parameter, their ‘thickness’: that is, the width of the cleft that separates the cytosolic face of the outer mitochondrial membrane from that of the ER. We describe and discuss the reasons why the thickness of a MERC should be considered a regulated structural parameter of the cell that defines and controls its function. Further, we propose a MERC classification that will help organize the expanding field of MERCs biology and of their role in cell physiology and human disease.

 
  • Facebook
  • Twitter
  • LinkedIn

2601 Ch. Canardiere
CERVO Brain Research Centre, Room F-5519
Québec City, QC, G1J 2G3 Canada

©2017 by Pellegrini Lab. Proudly created with Wix.com